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Abstract—Autism Spectrum Disorders (ASD) are among the 

most critical health concerns of our time. These disorders 

typically present challenges in social interaction, communication, 

and exhibit repetitive behaviors. To diagnose and customize 

medical treatments for ASD effectively, the development of 

robust neuroimaging biomarkers is indispensable. Although 

extensive studies have recently delved into this area, only a 

handful have explored the differences between ASD and NC. 

This study aspires to shed light on this relationship by analyzing 

both structural and functional brain data associated with ASD. 

We aim to provide an extensive characterization of ASD by 

combining techniques of structural and functional analysis. The 

framework we propose is based on analyzing the differences in 

structural and functional aspects between ASD and development 

control (DC) subjects. The study leverages a substantial dataset 

of 1114 T1-weighted structural and functional Magnetic 

Resonance Imaging comprising 521 individuals with ASD and 

593 controls, ranging in age from 5 to 64 years. These subjects 

are divided into three broad age categories. Utilizing automated 

labeling, we compute the features from subcortical and cortical 

regions. Statistical analyses help identify disparities between ASD 

and DC subjects. Principal Component Analysis (PCA) is 

employed to select the most discriminative features, which are 

subsequently used for classifying the two groups via an Artificial 

Neural Network (ANN) analysis. Our preliminary findings reveal 

a significant difference in the distribution of all tested features 

and subcortical regions between ASD subjects and DC subjects. 

Through our work, we contribute towards an enhanced 

understanding of ASD, potentially paving the way for future 

research and therapeutic interventions. 

Keywords—Autism spectrum disorder (ASD); Magnetic 

Resonance Imaging (MRI); functional Magnetic Resonance 

Imaging (fMRI); Artificial Neural Network (ANN) 

I. INTRODUCTION 

The nature of Autism Spectrum Disorder (ASD) is 
multilayered and intriguing, with its diverse manifestations 
affecting various aspects of an individual's life[1]. From social 
communication and behavioral patterns to intellectual abilities, 
ASD presents an array of symptoms that make it a unique 
neurodevelopmental disorder. An estimated one in every 54 
children is affected by ASD globally, underscoring its 
significant prevalence [2]. Despite this high occurrence, the 
causes of ASD remain enigmatic. Multiple genetic and 

environmental risk factors have been identified, yet they only 
partially explain the incidence of ASD. Consequently, rigorous 
research efforts continue to seek a deeper understanding of 
ASD's intricate etiology and neurobiology. 

Advancements in the field of neuroimaging have 
significantly contributed to our understanding of 
neurodevelopmental disorders such as ASD. From purely 
descriptive studies of the brain's anatomy, neuroimaging 
research has evolved to explore the profound 
neurodevelopmental alterations that occur in these conditions. 
Modern imaging techniques such as Structural Magnetic 
Resonance Imaging (sMRI) and functional Magnetic 
Resonance Imaging (fMRI), combined with state-of-the-art 
computational tools and machine learning algorithms, have 
provided unprecedented insights into the structural and 
functional anomalies associated with neurodevelopmental 
disorders. This development has brought about a paradigm 
shift in our understanding of these conditions, with a newfound 
focus on identifying potential biomarkers that can serve as 
quantitative indicators of specific brain abnormalities. 

MRI is an indispensable tool in ASD research, enabling 
non-invasive imaging of brain structure, connectivity, and 
function. Structural MRI studies have identified various 
alterations in brain regions involved in social communication, 
language processing, executive functions, and sensory 
integration in individuals with ASD. Functional MRI, on the 
other hand, has been pivotal in uncovering disrupted functional 
connectivity, particularly in regions responsible for social 
cognition and emotion processing. MRI's widespread 
utilization in ASD research has undoubtedly been instrumental 
in enhancing our understanding of the disorder's neurobiology. 

In-depth analysis of specific neuroanatomical regions has 
revealed that ASD is associated with certain alterations in brain 
structure, contributing to the varied cognitive and behavioral 
phenotypes observed in these individuals. Volumetric analysis 
of specific brain regions has reported differences in brain 
volumes between individuals with ASD and typically 
developing individuals. Similarly, cortical thickness analysis 
has identified disparities in the cerebral cortex's thickness 
between these two groups. The integration of these structural 
findings with functional studies has resulted in a holistic 
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understanding of the neurobiological underpinnings of ASD 
(Appendix A) 

Our research aims to extend these efforts by considering all 
the neuroanatomical regions implicated in ASD. Utilizing a 
sophisticated automated processing pipeline, we perform a 
comprehensive analysis of both 3D volumetric and functional 
brain regions. This inclusive approach ensures that we capture 
the full range of structural and functional abnormalities 
associated with ASD. Our work incorporates texture features 
derived from global descriptors and local textural features for 
the structural analysis, combined with statistical and temporal 
features for the functional analysis. This holistic approach 
allows us to identify unique volumetric and functional 
signatures of ASD, with the potential to contribute significantly 
to early detection, diagnosis, and monitoring of the disorder. 

The organization of this paper is as follows: Section II 
delineates the primary methodology used in our study, 
encompassing both structural and functional analyses. In 
Section III, we present the outcomes of our research, along 
with a thorough discussion on the effectiveness and 
implications of our proposed approach. The limitations of our 
study are discussed in Section IV. Finally, we draw 
conclusions from our findings in Section V. 

II. MATERIALS AND METHODS 

This chapter elaborates on the methods utilized in our study 
to distinguish autism using MRI and fMRI data. Initially, we 
detail the preprocessing steps for data standardization. Then, 
we describe how significant features were extracted from the 
imaging data. Finally, we explain the classification techniques 
used to differentiate between autistic and neurotypical 
individuals. This approach allows us to identify potential 
autism biomarkers and understand the underlying neural 
mechanisms. You will find the pipeline of our structural 
method in the Fig. 1. 

 
Fig. 1. Pipeline of the structural analysis methods for the characterization of 

ASD. 

A. Structural Analysis 

 Preprocessing of sMRI 

MRI registration is a key step in neuroimaging studies, 
aligning multiple MRI images for spatial correspondence. 
Commonly, the Montreal Neurological Institute space (MNI 

152 space) is used as a reference for this alignment. This 
process involves an initial reorientation of MRI scans, with 
anatomical labels defined to correct any discrepancies. Then, 
we perform a skull stripping or brain extraction step to isolate 
brain tissue from non-brain elements, using methods like the 
Optimal Surface Thresholding (OST). This step is crucial in 
reducing potential artifacts in subsequent MRI analyses (Fig. 
2). 

 
Fig. 2. An example of the brain MRI registration with an original MR image 

of brain (a) and registered image (b). 

 Segmentation of the Regions of Interest 

In our research, we apply an automatic method for 
identifying and segmenting brain regions of interest (Appendix 
B) relevant to ASD using both probabilistic and anatomical 
models. A Bayesian probabilistic approach, based on Markov 
modeling, is used for accurate identification and segmentation 
of ROIs. This approach incorporates prior knowledge about 
brain structures, facilitating accurate ROI identification. 
Markov random fields (MRFs) account for spatial 
dependencies between neighboring elements in the image, 
enforcing spatial continuity and reducing the impact of 
noise[3]. 

 ( | )  ( ( | )   ( ))  ( ) (1) 

Where: 

P(A | B) is the posterior probability of event A occurring, 
given that event B has occurred. 

P(B | A) is the likelihood of event B occurring, given that 
event A has occurred. 

P(A) is the prior probability of event A occurring. 

P(B) is the marginal probability of event B occurring. 

The process involves formulating a model incorporating 
Bayesian probability theory and Markov models, estimating 
model parameters using the maximum likelihood estimation 
(MLE), and iteratively refining the model using the 
Expectation-Maximization (EM) algorithm[4]. The final step is 
image classification and segmentation using maximum a 
posteriori (MAP) estimation, assigning each pixel or voxel to a 
specific ROI based on the most probable assignment given the 
observed data and the model parameters. 

    ( )        ( ( | )) (2) 

where θ represents the model parameters, X denotes the 
observed data, and P(X | θ) is the likelihood of the data given 
the parameters. During this process, we account for the natural 
variability in the image data and consider the spatial 
dependencies between neighboring elements[5].  

   ( )        ( ( | )) (3) 
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where θ represents the model parameters, X denotes the 
observed data, and P(θ | X) is the posterior probability of the 
parameters given the data (result in Fig. 3). 

 
Fig. 3. Segmentation steps of left hippocampus. 

 3D mesh construction 

Medical imaging and computer vision often require the 
transformation of raw image data into a format more suitable 
for analysis, and 3D mesh models fill this need. The process 
begins with image segmentation, followed by surface 
extraction, and finally, mesh generation. The surface of the 
target object is extracted using the Marching Cubes algorithm, 
which divides the 3D volume into a grid of small cubes and 
forms a polygon configuration within each cube based on 
whether corners lie above or below a certain threshold. This 
creates an interconnected surface approximating the boundary 
of the target structure. 

Next, mesh generation connects points on the surface to 
form polygons in a process known as triangulation, resulting in 
a 3D mesh composed of numerous triangles. This mesh model, 
which represents the 3D shape of the target object, provides a 
detailed and accurate foundation for further analysis, 
visualization, or computation (result in Fig. 4). 

 

Fig. 4. 3D Meshes structures. 

 Feature extraction of sMRI 

The analysis of anatomical MRI data involves a pivotal 
phase known as feature extraction. This step translates complex 
3D images into measurable, actionable information by 
identifying and quantifying various properties of the structures 
within the images. This process plays an integral role in 
exploring potential biomarkers for Autism Spectrum Disorder 
(ASD). Feature extraction focuses on two primary categories: 
geometric and texture features. 

Geometric features provide information about the shape 
and structure of areas within the brain, helping to understand 
physical alterations related to ASD. Texture features, on the 
other hand, capture intensity variations within a region, 
revealing patterns that might indicate different tissue types or 
states, and possibly reflecting microstructural properties of the 
brain regions linked to neurodevelopmental changes in ASD. 

In this study, multiple mathematical and statistical methods 
are applied to calculate these features. Riemannian geometry is 
used to understand the intrinsic curvature of surfaces and 
spaces. It allows for the computation of the area, volume, 
isoperimetric ratio, convexity ratio of the surface and volume, 
and Gaussian and Mean curvatures. 

Haralick texture features, or Gray Level Co-occurrence 
Matrix (GLCM) features, provide a statistical snapshot of the 
texture. Several statistical measures are derived from the 
GLCM, including the Angular Second Moment (or Energy), 
Contrast, Correlation, Variance, Inverse Difference Moment 
(or Homogeneity), Entropy, Sum Average, Sum Variance, Sum 
Entropy, Difference Variance, and Difference Entropy (Annex 
B). 

By combining geometric and texture feature extraction, a 
comprehensive picture of the structural changes associated 
with ASD is captured. This approach goes beyond traditional 
measures and explores a broader spectrum of potential 
biomarkers. Through statistical analysis of these features, 
patterns can be identified that could serve as reliable 
biomarkers for ASD, enhancing our understanding of this 
complex condition and potentially informing future diagnostic 
and therapeutic strategies. 

B. Functional Analysis 

 Preprocessing of fMRI 

The preprocessing of fMRI data begins with obtaining raw 
scan data. This data then undergoes several steps to enhance its 
quality and reliability (Fig. 5). These steps include: 

Motion Correction: This process is used to minimize the 
effects of head movement during the scan. The process 
involves realigning all volumes acquired during an fMRI scan 
to a reference volume to eliminate motion-related artifacts. 

Slice Timing Correction: This step compensates for the 
time difference between the acquisitions of different slices in 
each volume. The correction aims to align the signal from all 
slices as if they were acquired at the same time, improving the 
accuracy of the data. 

Registration: This process aligns different sets of data into 
one common space. It involves within-subject registration 
(aligning images from the same individual) and between-
subject registration (aligning images from different individuals 
to a standard template). 

Spatial Normalization: This involves transforming 
individual brain images to fit into a standard template, enabling 
group analyses and inter-subject comparisons. 
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Fig. 5. Pipeline of the functional analysis methods for the characterization of 

ASD. 

Spatial Smoothing: This process improves the signal-to-
noise ratio by averaging a voxel's signal with the signal of 
surrounding voxels. It also helps mitigate differences in 
functional neuroanatomy across participants and satisfies 
certain statistical assumptions (result in Fig. 6). 

 

Fig. 6. Example of preprocessing data. 

 Segmentation of the Regions of Interest 

In our autism study, we furthered our fMRI data analysis 
by segmenting regions of interest (ROIs), focusing specifically 
on brain regions previously implicated in autism spectrum 
disorder (ASD). This approach allowed us to investigate how 
structural abnormalities in these regions may influence 
functional connectivity patterns and contribute to ASD's 
characteristic features (Fig. 7). 

 
Fig. 7. ROI segmentation. 

To achieve this, we utilized Atlas-based segmentation, 
employing the Harvard-Oxford atlas for its detailed labeling of 
cortical and subcortical brain structures. After selecting our 
ROIs from this atlas, we applied the labels to our fMRI data 
through a process known as label propagation. The 
segmentation information from multiple atlas images, when 
used, was fused to create the final segmentation result. This 

thorough process ensured accurate segmentation and paved the 
way for our subsequent ASD analysis and classification. 

 Time Series Extraction 

After defining the regions of interest (ROIs) in our fMRI 
data, we conducted time-series extraction, a fundamental step 
in functional connectivity analysis. This process involves 
gathering the intensity values for each voxel within the ROI 
across each time point in the fMRI series. By averaging the 
signal change over time across all voxels within each ROI, we 
generated a single time-series for each region, enabling us to 
investigate various patterns of brain activity over time (Fig. 8). 

 

Fig. 8. Example of time series for one voxel. 

 Feature extraction of fMRI 

In our analysis of fMRI data, we performed feature 
extraction, a process to convert raw, high-dimensional time 
series data into a simpler, lower-dimensional format. We used 
the Python library tsfresh to extract 150 statistical and temporal 
features from the time series data. 

Statistical features provided a summarized description of 
the variation in signal intensity over time. They included 
measures like mean, median, variance, standard deviation, and 
others, helping to quantify the properties of the signal. 

Temporal features captured how brain responses changed 
over the course of the experiment. They included 
Autoregression coefficients, trend features, and Fourier 
coefficients among others, allowing us to uncover patterns in 
brain activity and comprehend the interactions between 
different brain regions. 

Through feature extraction, we transformed complex fMRI 
data into a more manageable format without losing vital 
information, preparing it for processing by machine learning 
models. 

C. Multi-Modal Imaging Fusion 

In this section of our research, we'll take the critical step of 
fusing the feature sets derived from both structural and 
functional imaging data. This combined feature set will be 
utilized to provide a comprehensive perspective on the 
neuroanatomy and functionality of the key brain regions 
implicated in Autism Spectrum Disorder (ASD). This 
integrated analysis could provide more robust and meaningful 
insights into the neurobiological underpinnings of ASD. 

 Dimensionality reduction 

Upon combining the features extracted from both the 
structural and functional data, we find ourselves dealing with 
an extremely high-dimensional feature set. This poses a 
significant challenge in the context of machine learning, 
potentially leading to overfitting, difficulty in interpretation, 
and a spike in computational demands. This is where feature 
selection comes into play. 
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Feature selection allows us to filter out less informative 
features and focus on those that contribute the most to our 
model's predictive power. We utilized Principal Component 
Analysis (PCA) as a strategic choice for our feature selection 
process. PCA is particularly advantageous for our high-
dimensional data as it allows us to reduce the dimensionality 
while retaining as much information as possible. PCA 
identifies the directions (principal components) in which the 
data varies the most and transforms the original, high-
dimensional data into a lower-dimensional set of new features, 
Fig. 9. These features are linear combinations of the original 
ones, selected in such a way that they are uncorrelated and 
retain the maximum amount of variance from the original data. 

In our study, we set the PCA to retain 95% of the variance. 
This criterion led to the selection of 30 principal components 
which are sufficient to retain 95% of the information from the 
original features. The resulting dataset, composed of 30 
uncorrelated principal components, still captures the major 
patterns and structures in our original high-dimensional data, 
making it a more manageable and effective input for our 
subsequent machine learning model. Thus, the application of 
PCA serves as a powerful step in preparing our feature set for 
the final stages of ASD diagnosis. 

 
Fig. 9. Feature contributions to the first two principal components. 

 Classification 

Classification is essential in diagnosing ASD using 
machine learning. We've chosen to employ an Artificial Neural 
Network (ANN), a model that imitates the human brain's 
structure and function, for this task. ANNs consist of 
interconnected neurons in layers: an input layer for receiving 
data, hidden layers for data processing, and an output layer for 
final results. ANNs 'learn' by adjusting inter-neuron 
connections through backpropagation, thereby minimizing the 
difference between predicted and actual outputs. Their ability 
to model complex, non-linear relationships and learn intricate 
patterns make ANNs an effective tool for accurate ASD 
classification, given enough data and training time. 

In our study, we applied an ANN for ASD classification, 
guided by an intricate process. Firstly, we initiate feedforward 
computation, where the input is sequentially processed through 
each layer of the network using a sigmoid activation function. 
The final prediction is made at the output layer. We then 
employ a loss function, specifically Mean Squared Error 
(MSE), to quantify the discrepancy between the network's 
prediction and the actual value[6]. 

    
 

 
∑ (    ̂ )

  
    (4) 

Where: 

N is the number of samples 

   is the actual value 

 ̂  is the predicted value 

The loss function thereby indicates the error of the network. 
Backpropagation, a method of calculating the loss function's 
gradient with respect to the network's weights and biases, 
follows. It commences from the output layer, moving 
backward through the hidden layers. The network's weights 
and biases are then updated by subtracting a fraction of the 
gradient, dictated by the learning rate, a key hyperparameters. 
This whole process is repeated for each batch of data in the 
training dataset for a set number of epochs, gradually adjusting 
the network's weights and biases to minimize the loss function, 
and improving prediction accuracy. We customized certain 
hyperparameters (Appendix C, Table VII), like the learning 
rate and the structure of hidden layers, for our specific 
application to ensure optimal performance. By fine-tuning 
these hyperparameters, we could better capture complex 
patterns in ASD data, thereby increasing the accuracy of our 
ASD characterization (Fig. 10). 

 

Fig. 10. Pipeline of diffusion method. 

III. RESULTS AND DISCUSSION 

In this section, we initially outline the database utilized for 
our investigation in the first part. This is followed by a 
description of the tuning process for the ANN in Section B. 
Subsequently, we delve into an evaluation of the proposed 
method's performance. Lastly, we provide a comparative 
analysis with a few prevalent techniques from the established 
standards. 

A. Database Description 

The non-invasive imaging technique, MRI is pivotal to our 
study for its ability to generate detailed, high-resolution images 
of the brain. Our investigation uses data from the Autism Brain 
Imaging Data Exchange (ABIDE), a collaborative initiative 
that curates diverse MRI datasets globally for autism research. 
This collaboration ensures a robust dataset that offers 
comprehensive insight into autism's structural patterns. 

ABIDE provides a large-scale collection of both structural 
and functional MRI datasets, improving our understanding of 
the neural mechanisms underlying ASD. With over 1200 
datasets from more than 24 international brain imaging 
laboratories, these collections afford a rich assortment of data 
for our analyses. 

In our work, the ABIDE data is categorized into three 
distinct age groups - early childhood (1-9 years), late childhood 
and adolescence (10-25 years), and adulthood (above 25 
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years), each reflecting a different stage of brain development, 
Table I. This classification allows us to examine autism's 
manifestation and evolution throughout life stages, offering a 
nuanced understanding of ASD's progression and neurological 
implications. 

TABLE I.  THE DEMOGRAPHIC INFORMATION OF THE DATABASE ABIDE 

1st range 2nd range 3rd range 

The postnatal development 

of the human brain. 

The brain reaches 

its adult size. 

The brain reaches 

its full size. 

5-9 years old 10-25 years old +25 years old 

646 patients 218 patients 148 patient 

315 ASD 331 NC 
154 
ASD 

164 NC 70 ASD 78 NC 

B. Machine Learning Evaluation 

 k-fold cross-validation 

Our study applies probabilistic learning methods to 
optimize neural networks, dividing our data into training and 
testing sets for reliable model training and validation. The 
training set is used to teach the model to recognize data 
patterns, while the unseen testing set assesses how well it 
generalizes these patterns. We employ k-fold cross-validation 
to bolster the reliability of our results and avoid overfitting. 
This involves splitting the training data into 'k' subsets and 
training the model 'k' times, each time using a different subset 
for validation (Fig. 11). 

 

Fig. 11. How the dataset was split. 

This provides 'k' models and performance estimates which 
can be averaged to offer a more reliable measure of 
performance. Specifically, we use 4-fold cross-validation, 
partitioning our data into four subsets. For each training cycle, 
80% of the data trains the model, while the remaining 20% 
validates it. The model's performance is then assessed using the 
validation set, and quantified using metrics such as accuracy, 
precision, and recall. By averaging performance across four 
iterations, we gain a robust measure of the model's predictive 
capabilities, mitigating the risk of overfitting and providing a 
realistic evaluation of the model's potential real-world 
performance. This approach ensures the robustness, reliability, 
and applicability of our model in studying autism spectrum 
disorders. 

 Performance evaluation 

In our study, we use an ANN classifier to analyze features 
derived from structural and functional MRI data. The analysis 
reveals differences in specific brain regions when compared to 
a control group[7]. The model's performance, evaluated using 
the identified feature sets, is detailed in Table II, which 
demonstrate metrics like accuracy, sensitivity, and specificity. 

Accuracy is a simple performance metric, calculated as the 
ratio of correct model predictions to total predictions. Ranging 
between 0 and 1, a score of 1 denotes a perfect model. We use 
the equation: 

          (     ) (           ) (5) 

where TP, TN, FP, and FN represent true positives, true 
negatives, false positives, and false negatives, respectively. 

Sensitivity, or recall, measures the proportion of actual 
positive cases correctly identified by the model. Calculated as: 

                (     ) (6) 

It quantifies the model's ability to detect all relevant 
instances. 

Specificity evaluates the model's performance regarding 
negative cases. It represents the proportion of true negative 
cases correctly identified by the model, computed as: 

                (     ) (7) 

By using these three metrics to evaluate our model, we 
ensure that it is well-rounded, accurately predicting both 
positive and negative cases. This makes it a potentially 
valuable tool in characterizing autism. 

 Results 

In our study, we evaluate the effectiveness of an ANN in 
differentiating between individuals diagnosed with ASD and 
control subjects across various age groups. This evaluation 
employs a fusion of structural and functional analyses, a crucial 
approach for comprehensively understanding the relationships 
within the brain's structure-function framework. We base this 
assessment on a combination of geometric, volumetric, 
temporal, and statistical features, the outcomes of which are 
represented in Tables II, III, and IV. 

 Discussion 

In this research, we utilize an ANN to differentiate 
individuals diagnosed with ASD from control subjects across 
various stages of life: early childhood, late childhood and 
adolescence, and adulthood. Both structural and functional 
characteristics of the brain are examined to provide a 
comprehensive view of how our model performs. By 
integrating both structural and functional neural features, our 
classifier demonstrated robust performance across all 
developmental stages. Despite a decline in accuracy with 
increasing age, the integrated approach provided valuable 
insights, highlighting the relevance of a comprehensive brain 
analysis in diagnosing ASD. 
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TABLE II.  EVALUATION RESULTS OF THE FIRST RANGE AGED FROM 5 YEARS TO 9 YEARS 

Region WB GM Left Pa Left NA Left Thala Left Amy Left Pu Left Hipp Left CN Left CC 

Accuracy 81.2 79.7 70.9 77.5 80.9 89.2 79.2 88.5 72.5 88.3 

Sensitivity 0.86 0.72 0.88 0.70 0.82 0.90 0.82 0.92 0.95 0.89 

Specificity 0.59 0.66 0.57 0.61 0.66 0.70 0.60 0.69 0.75 0.74 

Region B.Stem WM Right Pa Right NA Right Thala Right Amy Right Pu Right Hipp Right CN Right CC 

Accuracy 87.0 77.9 78.6 77.5 77.6 90.5 79.9 89.4 75.9 88.6 

Sensitivity 0.85 0.88 0.72 0.90 0.89 0.83 0.77 0.80 0.75 0.80 

Specificity 0.70 0.58 0.62 0.77 0.65 0.76 0.85 0.79 0.60 0.66 

Fusing all ROI: accuracy =90.1% 

TABLE III.  EVALUATION RESULTS OF THE FIRST RANGE AGED FROM 10 YEARS TO 25 YEARS 

Region WB GM Left Pa Left NA Left Thala Left Amy Left Pu Left Hipp Left CN Left CC 

Accuracy 73.0 72.7 63.0 71.9 73.2 81.2 78.6 85.2 83.0 79.6 

Sensitivity 0.80 0.70 0.73 0.81 0.69 0.74 0.58 0.84 0.77 0.88 

Specificity 0.63 0.56 0.59 0.44 0.55 0.63 0.47 0.65 0.45 0.79 

Region B.Stem WM Right Pa Right NA Right Thala Right Amy Right Pu Right Hipp Right CN Right CC 

Accuracy 69.7 78.3 70.0 68.4 69.0 85.1 70.4 84.2 69.9 77.9 

Sensitivity 0.69 0.72 0.72 0.90 0.82 0.88 0.83 0.76 0.65 0.58 

Specificity 0.70 0.60 0.64 0.47 0.60 0.53 0.52 0.63 0.74 0.47 

Fusing all ROI: accuracy =86.2% 

TABLE IV.  EVALUATION RESULTS OF THE FIRST RANGE AGED FROM 26 YEARS TO 64 YEARS 

Region WB GM Left Pa Left NA Left Thala Left Amy Left Pu Left Hipp Left CN Left CC 

Accuracy 56.2 46.8 59.1 61.5 57.2 57.8 65.4 59.2 59.0 62.1 

Sensitivity 0.61 0.71 0.54 0.75 0.63 0.78 0.59 0.79 0.70 0.79 

Specificity 0.47 0.35 0.69 0.59 0.54 0.65 0.72 0.51 0.54 0.58 

Region B.Stem WM Right Pa Right NA Right Thala Right Amy Right Pu Right Hipp Right CN Right CC 

Accuracy 50.9 50.1 55.4 50.8 62.1 56.5 54.5 62.0 53.1 59.9 

Sensitivity 0.83 0.72 0.62 0.75 0.59 0.63 0.70 0.92 0.55 0.88 

Specificity 0.59 0.51 0.64 0.60 0.71 0.74 0.56 0.66 0.75 0.68 

Fusing all ROI: accuracy =67.9% 

The combined analysis in the late childhood and 
adolescence stage maintains high accuracy levels, with the 
right amygdala again leading with an accuracy of 85.1%. The 
accuracy levels of WB and GM are 73.0% and 72.7%, 
respectively. While the accuracy rates have declined slightly 
from the early childhood stage, the fused ROI result still 
maintains a solid accuracy of 86.2%. 

The final findings underscore the complexity of ASD and 
the importance of a multifaceted approach to brain data 
analysis for accurate ASD identification. The research provides 
a promising pathway for the future of ASD detection and 
diagnosis, and potentially for other neurodevelopmental and 
neurodegenerative disorders, through the use of ANN 
classifiers. Our methodology, which combines structural and 
functional brain properties, could serve as a valuable tool in the 
development of Computer-Aided Diagnosis systems, 
particularly for neurodegenerative diseases like Alzheimer's 

and Parkinson's, which also involve significant changes in the 
brain. 

 Comparison analysis 

In the table below, we present a comparison of various 
prior studies that have focused on the characterization of ASD 
by employing both structural and functional MRI. This 
comparative analysis aims to provide a broader perspective on 
how our approach to ASD classification using an ANN stands 
in relation to previous research efforts. 

Each study listed in the table has contributed significantly 
to our current understanding of ASD's neurological 
underpinnings. However, the methodologies employed, the 
specific features extracted, and the performance metrics 
achieved vary from one study to another. Some researchers 
have concentrated more on the structural aspects of the brain 
(Table V), while others have leaned towards functional 
analysis (Table VI). 
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TABLE V.  ASD CLASSIFICATION STUDIES BASED ON SMRI DATA 

Study Participants Data Features 
Machine learning 

method 
Accuracy 

Seyedmehdi 

Payabvash, et al.[8] 

14 with ASD 33 typically 

developing children 

The UCSF Sensory 

Neurodevelopment and 

Autism Program clinical 
sites and research 

database 

Tract-based average 

TI/connectome metrics 

Support vector 

machines 
75.3% 

Almeida, J.,et al.[9] 
403 ASD 
468 TC 

The open 

database Autism Brain 
Imaging Data 

Exchange (ABIDE). 

The volume of the cerebral 
cortex 

Support vector 
machines 

76% 

Ahmad Chaddad,et 

al.[10] 

34 ASD 

30 DC 
 

The open 
database Autism Brain 

Imaging Data 

Exchange (ABIDE). 

11 features derived from 

Hippocampus 
Amygdala 

Support vector 

machines 

67.85% 

 

Ayşe Demirhan et 

al.[11] 
1390 subjects 

Five different datasets : 

OASIS, ABIDE, 

COBRE, ADHD and 
MCIC 

Volumes and thickness 

of anatomical structures 

Support vector 

machines 
83% 

Pinaya et al.[12] HC=105 ASD=83 

Autism Brain Imaging 

Data Exchange (ABIDE) 

data set 

ROI based volumetric 
measurements 

Deep autoencoder 63.9% 

Ferrari et al.[13] HC=1166 ASD=1060 
T1w from ABIDE I and 

ABIDE II 

Brain morphometric 

features 
Deep autoencoder 79% 

Qureshi, M.N.I.et 

al[14] 
1000 subjects 

Attention deficit 

hyperactivity disorder 
ADHD-200 dataset of 

patients and healthy 

children. 

the cortical thickness 

measures 

Support vector 

machines 
76.19% 

Xiao, X.et al[15] 
46 ASD 

39 DC 

Child Mental Health 
Research Center of 

Nanjing Brain Hospital 

cortical‐thickness 

measurement 

surface‐based 
morphometry 

RF 
NB 

SVM 

75.6% 
80.9% 

80% 

Sina Ghiassian.et 

al[16] 

490 HC 

279 ASD 

Attention deficit 

hyperactivity disorder 

ADHD-200 dataset of 
patients and healthy 

children. 

HOG feature extraction 
Support vector 

machines 
69.6% 

Dennis Dimond et 

al.[17] 

27 ASD 

31 TD 

Participant databases at 
the Alberta Children’s 

Hospital 

intra-cranial volume 
Artificial Neural 

Network 
77% 

Bhashkar Sen, et 

al[18] 

ADHD: 491 HC et 279 ASD 
ABIDE: 573 HC et 538 ASD 

ADHD-200 (including 8 
sites) 

 

ABIDE (including 17 
sites) 

3-D texture based and 

independent component 

analysis 

Linear support 

vector machine 

classifier 

ADHD 0.64% 

 

ABIDE 0.62% 

Calderoni et al[19] HC=19 ASD=38 T1w 
voxel-based morphometry 

(VBM) 

Support vector 

machines 
80% 

Gori et al[20] HC=20 ASD=21 T1w 
Regional morphological 
features 

Support vector 
machines 

74% 

Hossein Shahamat et 

al[21] 

403 ASD 
468 TC 

Autism Brain Imaging 

Data Exchange (ABIDE) 

data set: 1112 datasets 

 

Convolutional neural 

network (CNN) 

models 

70% 

 

 

Guannan LI et 

al.[22] 

170 TC 

106 ASD 

276 subjects from 
National Database for 

Autism Research 

(NDAR) 

 

3D 

Convolutional neural 

network (CNN) 
models 

 

0.7624 

Fengkai Ke et al[23] 

ADHD: 

40 HC 
33 ASD 

ABIDE: 

573 HC 
538 ASD 

The first dataset was 

collected by the Yonsei 
University College of 

Medicine (YUM) + the 

second was ABIDE 
dataset 

 
3D CNN 

 
0.64 

javascript:;
https://www.sciencedirect.com/topics/neuroscience/neural-network
https://www.sciencedirect.com/topics/neuroscience/neural-network
https://link.springer.com/chapter/10.1007/978-3-030-00919-9_35#auth-Guannan-Li
https://www.sciencedirect.com/topics/neuroscience/neural-network
https://www.sciencedirect.com/topics/neuroscience/neural-network
https://ieeexplore.ieee.org/author/37088446349
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TABLE VI.  ASD CLASSIFICATION STUDIES BASED ON RS-FMRI DATA 

Study Participants Data Features Feature selection 
Machine learning 

method 
Accuracy 

Reiter et al. 

(2021) [24] 

306 ASD 350        

TC 

rs-fMRI data(the 

ABIDE dataset 

and data sample 
from SDSU) 

FC between 237 ROIs 
(the Gordon atlas the 

HO atlas) 

Conditional random 
forest 

 

Random Forest 

62.5% 

65% 

70% 
73.75% 

Yang et al. 

(2021) [25] 
79 ASD 105 TC 

rs-fMRI data (the 
ABIDE dataset) 

8 brain functional 

networks from group-

ICA 

Dual regression 3D CNN classifier 77.74% 

Kazeminejad 

and Sotero 

(2020) [26] 

493 ASD 530 TC 
rs-fMRI data (the 
ABIDE dataset) 

FCs between 200 

ROIs (the CC200 

atlas) 

PCA A multilayer perceptron 64.4% 

Liu Y. et al. 

(2020) [27] 
403 ASD 468 TC 

rs-fMRI data (the 
ABIDE dataset) 

D- FCs between ROIs 
(the AAL atlas) 

MTFS-EM Multi-kernel SVM 76.8% 

Huang et al. 

(2020) [28] 
505 ASD 530 TC 

rs-fMRI data (the 

ABIDE dataset) 

FCs between 200 

ROIs (the CC200 
atlas) 

Graph-based feature-

selection method 
DBN classifier 76.4% 

Thomas et al. 

(2020) [29] 
620 ASD 542 TC 

rs-fMRI data (the 

ABIDE dataset) 

Nine summary 

measures 
None 3D CNN classifier 64% 

Sherkatghanad 

et al. (2020) [30] 
505 ASD 530 TC 

rs-fMRI data (the 

ABIDE dataset) 

FCs between 392 
ROIs (the CC400 

atlas) 

None CNN classifier 70.22% 

Liu Y. et al. 

(2020)[31] 
506 ASD 548 TC 

rs-fMRI data (the 

ABIDE dataset) 

FCs between 200 
ROIs (the CC200 

atlas) 

Extra-tree Linear-SVM 72.2% 

Tang et al. 

(2020) [32] 
505 ASD 530 TC 

rs-fMRI data (the 
ABIDE dataset) 

FCs between 116 

ROIs fMRI × ROI 
connectivity (the 

AAL atlas) 

None DNN classifier 74% 

Fredo et al. 

(2019) [33] 

306 ASD 350 TC 

(400 participants 
for each sample) 

rs-fMRI (the 

ABIDE dataset) 

FCs between 237 
ROIs (the Gordon’s 

cortical atlas the HO 

atlas) 

Conditional random 

forest 
Random forest 

62.5% 

65% 
70% 73.75% 

Eslami et al. 

(2019) [34] 
505 ASD 530 TC 

rs-fMRI data (the 

ABIDE dataset) 

FCs between 200 
ROIs (the CC200 

atlas) 

AE 
A single layer 

perceptron 
80% 

Kazeminejad 

and Sotero 

(2019) [35] 

109 participants 

342 participants 

190 participants 

137 participants 
51 participants 

rs-fMRI data (the 
ABIDE dataset) 

FCs between 116 
ROIs (the AAL atlas) 

A sequential forward 
floating algorithm 

Gaussian SVM 

86% 

69% 

78% 

80% 
 

Li et al. (2018) 

[36] 

38 ASD 

23 TC 

rs-fMRI data (the 

ABIDE dataset) 

FCs between 90 ROIs 

(the AAL atlas) 
SSAE DTL-NN classifier 70.4% 

This comparison underscores the diverse approaches 
researchers have taken to tackle ASD classification using MRI 
data. Our research's contribution lies in its unique fusion of 
both structural and functional analyses across different age 
groups, which provides a more holistic understanding of 
ASD's neurological characteristics. The table below offers a 
succinct summary of these various studies, illuminating the 
varying methodologies and results that have been achieved in 
the past. 

IV. STUDY LIMITATIONS 

Despite the promising findings, the current study is not 
without its limitations. Primarily, our work relies on the 
Autism Brain Imaging Data Exchange (ABIDE) which, while 
being a rich public dataset, has its limitations. The datasets are 
collected from 521 individuals with ASD and 593 controls with 
ages ranging from five to 64 years. However, this is a 
comparatively small dataset for making definitive 
classifications. To expand upon the insights provided by this 
study, future research should aim to collect data from a larger 

group of preschoolers with ASD to further explore brain 
development during early childhood. 

Secondly, while we acknowledge the gender disparity in 
ASD diagnoses, with males being more frequently diagnosed 
than females, this issue has been generally overlooked in ASD 
imaging literature due to the significantly higher prevalence of 
ASD in males. In the ABIDE dataset, the number of datasets 
from females is limited (65 datasets, encompassing both ASD 
and control subjects), making a thorough analysis of gender 
influences challenging. Despite the potential of Artificial 
Neural Networks (ANNs), they have inherent limitations. Their 
'black-box' nature makes it hard to understand how they arrive 
at specific predictions, leading to challenges in interpretability. 
Furthermore, ANNs can sometimes overfit high-dimensional 
data, especially with limited samples, leading to poor 
performance on unseen data. To address these issues, future 
work could explore methods for enhancing interpretability and 
preventing overfitting. 

While these limitations pose challenges, they also highlight 
potential directions for future research. We need larger, more 
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diverse samples and more robust methods to handle high-
dimensional data for more accurate and generalizable results. 
In addition, research efforts should not neglect gender 
disparities in ASD and strive for greater representation in 
imaging studies. By addressing these issues, we can further 
refine our understanding of ASD's neurobiological 
underpinnings and improve diagnostic strategies. 

V. CONCLUSION 

In conclusion, our study has successfully highlighted the 
significance and value of employing an integrated, multimodal 
approach in characterizing and diagnosing ASD across various 
developmental stages. The results have underscored the vital 
role played by specific brain regions such as the Right 
Amygdala, Left Amygdala, Right Corpus Callosum, Left 
Putamen, and Right Hippocampus in ASD classification. 
Furthermore, the distinctive combination of both structural and 
functional neural features in our ANN classifier has proven to 
be a powerful tool in capturing the complex neurobiological 
nuances of ASD. 

While the classifier demonstrated robust performance 
across all developmental stages, particularly in early childhood, 
it also unveiled the increasing complexity of ASD diagnosis in 
later life stages. This highlights the intricate interplay between 
ASD symptomatology, brain development, and aging. 
However, even amidst these challenges, the classifier 
continued to provide valuable insights and significant accuracy 
scores, asserting the value of a comprehensive brain analysis 
approach for ASD diagnosis. 

The fusion of results from structural and functional 
analyses created a more comprehensive model for ASD 
classification, resulting in a more robust and accurate 
representation of the disorder. This integrated approach 
produced promising results, especially in the domain of early 
ASD diagnosis. The highest diagnostic accuracy achieved in 
our study reached 90.1%, signifying the potential of a 
multimodal approach that captures a more complete picture of 
ASD's neurobiological underpinnings. 

Our study contributes significantly to the field by providing 
a broader understanding of ASD. By integrating structural and 
functional aspects of brain imaging data, we enhance our 
ability to identify and diagnose the disorder accurately. Our 
research not only paves the way for further advancements in 
early detection and personalized treatment strategies for 
individuals with ASD but also sets the stage for this 
methodology to serve as a Computer-Aided Diagnosis tool for 
the detection of other neurodegenerative diseases such as 
Alzheimer's and Parkinson's. 

Despite some limitations, particularly regarding the decline 
in accuracy with increasing age, our study reaffirms the need 
for a comprehensive, multidimensional analysis of brain data 
for accurate ASD identification. It also suggests areas for 
future research to enhance the understanding and diagnosis of 
ASD, potentially through the development of more 
sophisticated feature extraction or classification methods. 

In essence, this research demonstrates the potential of a 
comprehensive, multimodal neuroimaging approach, combined 
with advanced machine learning techniques, to improve early 

detection and understanding of ASD, thereby paving the way 
for more effective intervention strategies. It lays a solid 
foundation for similar techniques to be used for other 
neurodevelopmental and neurodegenerative diseases, offering a 
significant tool for future diagnostic strategies. 
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APPENDIX A 

In this part, all regions that were mentioned in the state of the art and were 
related to ASD were cited below. 

White matter: studies have shown that white matter disease is associated 
with Autism through some physical and emotional symptoms such as balance 
problems, falls, depression, and difficulty of multitasking activities such 
walking and talking[37]. 

Gray matter: Grey matter is involved in muscle control, and sensory 
perception such as seeing and hearing, speech, self-control, emotions, memory, 
and decision-making. Researchers found that children diagnosed with autism 
have more abnormality in gray matter [38]. 

Nucleus accumbens: The nucleus Accumbens core is involved in the 
cognitive processing of motor function related to reinforcing slow-wave sleep 
to regulate reward-motivated behaviors. Some studies related this subcortical 
region with ASD [39]. 

Amygdala: the amygdala is related to emotional learning and behavior. 
Many studies demonstrate that amygdale texture features can be used to extract 
biomarkers for the characterization of ASD purposes [40]. 

Corpus callosum: Corpus Callosum the largest white matter structure in 
the brain. It is involved in the interhemispheric transfer of information and 
integrates motor, sensory, and cognitive performances. Many comparative 
studies show that it develops differently in children with autism [41]. 

Hippocampal: the two most influential theories for hippocampal function 
are related to space and memory. It is used by the brain for mapping layouts of 
the environment [40]. 

Pallidum: Pallidum is a part of the subcortical nervous circuits involved, in 
motor skills, and, in particular, in the control of posture. It is also associated to 
non-motor functions (e.g. cognition, emotions, etc...). 

Thalamus: Many previous studies shows that the thalamus play a key role 
in autism. It may regulate social behavior and it is considered as a relay station 
that merely passes sensory information to the cerebral cortex. 

Putamen: the role the putamen is to regulate movements. It employs 
GABA, acetylcholine, and encephalin to perform its functions. 

Caudate nucleus: the caudate nucleus is the subcortical region that controls 
learning, specifically the storing and processing of memories. Studies show that 
Autism causes a different development of ASD. 

Brainstem: The brain stem is the part of the brain that connects the 
cerebrum with the spinal cord. The review of the literature suggests that 
developmental alterations of the brainstem could have potential cascading 
effects on cortical and cerebellar formation, ultimately leading to ASD 
symptoms. 

APPENDIX B 

 Riemannian geometry 

Area: The area of a two-dimensional figure or shape is the  quantity that 
expresses the extent of the figure or shape in the the plane. Here in our work, 
we used (eq 8) to calculate the whole region area by applying the summation of 
all tetrahedrons areas. 

  ∑
 

  
     (8) 

Where a is the base and h is the height of the triangle. 

Volume: The volume is a closed surface that encloses a certain amount of 
three-dimensional space. Here in our work, we used (eq 9) to calculate the 
whole region volume by applying the summation of all tetrahedrons volumes. 

  ∑
√ 

  
     (9) 

https://en.wikipedia.org/wiki/Cerebrum
https://en.wikipedia.org/wiki/Spinal_cord
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Where a is the triangle base. 

Isoperimetric ratio: Iso-ratio depends on the volume and the surface. It is 
initially the study of the properties of the geometric 

shapes of the plane (eq 10). 

    
 

 
 
 

   (10) 

Where A is the triangle area and V is the Volume. 

Convexity ratio of the surface: The convex area of an object is the area of 
the convex hull that encloses the object (eq 11). 

    
 

 (  ) 
  (11) 

Where A is the triangle area and A (CH) is the convex hull depending on 
area. 

Convexity ratio of the volume: The convex volume of an object is the 
volume of the convex hull that encloses the object (eq 12). 

    
 

 (  )
  (12) 

Where V is the triangle volume and V (CH) is the convex hull depending 
on volume. 

Gaussian curvature: The Gaussian curvature is defined at a point of a 
surface contained in Euclidean space as the product of the two main curvatures 
(eq 13). 

         (13) 

Where   and    are principal curvatures. 

Mean curvature: the mean curvature of a surface is called the mean of the 
minimum and maximum curvatures (eq 14). 

   
 

 
(     )  (14) 

Where   and    are principal curvatures.  

 Harlicks texture descriptors  

The second standard L2N: The second standard measures the length 
common to all representations of a vector in an affine space (eq 15). 

| |  √∑ |  |
  

     (15) 

Where | |is the vector norm and |  | is the complex modulus. 

Means: Mean is the small mean values indicating coarse texture having a 
grain size equal to or larger than the magnitude of the displacement vector (eq 
16). 

     ∑ ∑   (   )   
   

   
    (16) 

Where   is the number of gray levels,    is the image matrix. 

Contrast: The contrast feature is a measure of the image contrast or the 
number of local variations present in an image (eq 17). 

         ∑ ∑ (   )    
   

   
     (   ) (17) 

Where   is the number of gray levels,    is the image matrix 

Angular Second Moment: Angular Second Moment and Uniformity, also 
called Energy, which is a measure of textural Uniformity of an image (eq 18). 

    ∑ ∑   (   )    
   

   
    (18) 

Where   is the number of gray levels,    is the image matrix  

Variance: This is the sum of the squares of the differences between the 
intensity of the central pixel and its neighbors (eq 19). 

  ∑ ∑ (      )    
   

   
     (   ) (19) 

Where   is the number of gray levels,    is the image matrix. 

Standard deviation: The standard deviation is a measure of the amount of 
variation or dispersion of a set of values (eq 20). 

  
  ∑ (      )    

   ∑   (   )   
    (20) 

Where   is the number of gray levels,    is the image matrix 

Correlation: Correlation feature shows the linear dependency of gray level 
values in the cooccurrence matrix: (eq 21). 

      
 

  
∑ ∑ (      )    

   
   
     (   )  (21) 

Entropy: is a measure of information content. It measures the randomness 
of intensity distribution and the homogeneity of the histogram (eq 22). 

          ∑ ∑    (   )      (   )   
   

   
    (22) 

Where   is the number of gray levels,    is the image matrix 

APPENDIX C 

In our work, we employed an Artificial Neural network for the 
classification. The parameters of a neural network are typically the coefficients 
of the model. In this case, these parameters are learned during the training 
stage. So, the algorithm itself, optimizes these coefficients. However, when 
training it, there are a number of hyperparameters we needed to set, including 
Table VII. 

TABLE VII.  HYPERPARAMETERS 

Hyperparameters (this is the case of each region) 

Number of hidden layers: 3 

Number of units in the input 45 

Number of units in first hidden, 90 

Number of units in second hidden, 30 

Number of units in third hidden 15 

Number of units in output layer 1 

Learning rate 0.000001 

Activation function for 1,2,3,4 activation=tanh' 

Activation function for the final layer activation='sigmoid 

Minibatch size 32 

Epochs 800 

Loss Function 'mean_squared_error' 

 

 


